Hopf-Galois Structures on Galois Field Extensions of Degree p^3 and Their Relationship to Skew Braces

Kayvan Nejabati Zenouz1

University of Exeter, UK

Groups, Rings and the Yang-Baxter equation

Spa

June 23, 2017

1Kn249@ex.ac.uk
Fix a prime $p > 3$ and let L/K be a Galois field extension of degree p^3 with Galois group G.

- Our main objective is to classify (or count) the *Hopf-Galois structures* on the extension L/K.

- This is directly related to classifying, for each group N of order p^3, all subgroups of the *holomorph* of N
 \[\text{Hol}(N) = N \rtimes \text{Aut}(N) = \{ \eta \alpha \mid \eta \in N, \alpha \in \text{Aut}(N) \} \]

 isomorphic to G which are *regular* on N: a subgroup $H \subset \text{Hol}(N)$ is *regular* if the map
 \[H \times N \longrightarrow N \times N \text{ given by } (\eta \alpha, \sigma) \longmapsto (\eta \alpha(\sigma), \sigma) \]

 is a bijection. N. P. Byott classified Hopf-Galois structures of order pq and p^2 for all primes p and q in [Byo04] and [Byo96].

- It turns out that doing the above, as G runs through all groups of order p^3, is directly related to the classification of *braces* (or *skew braces*) of order p^3. D. Bachiller classified *braces of abelian type* of order p^3 for all primes p in [Bac15].
Definition (Hopf-Galois structure [Chi00])

A Hopf-Galois structure on L/K consists of a finite dimensional cocommutative K-Hopf algebra H with an action of H on L making L into an H-Galois extension.

The classical Hopf-Galois structure on L/K is the group ring $K[G]$, however, there may be more Hopf-Galois structures on L/K.

Fact (Hopf-Galois structures on L/K and regular subgroups [Chi00])

Hopf-Galois structures on L/K correspond bijectively to the regular subgroups $N \subset \text{Perm}(G)$ normalised by G, i.e., every K-Hopf algebra H which makes L into an H-Galois extension is of the form $L[N]^G$ for some N with the above property; this N is known as the type of the Hopf-Galois structures.

The relationship between G and N above may be reversed. In particular, if $e(G, N)$ is the number of Hopf-Galois structures on L/K of type N, then

$$e(G, N) = \frac{|\text{Aut}(G)|}{|\text{Aut}(N)|} e'(G, N)$$

where $e'(G, N)$ is the number of regular subgroups of $\text{Hol}(N)$ isomorphic to G.
Definition (Brace (Skew brace [GV17, Rum07]))

A (left) skew brace \((B, \oplus, \odot)\) is a set \(B\) with two operations \(\oplus, \odot\) such that \((B, \oplus)\) and \((B, \odot)\) are groups, and the two operations are related by

\[
a \odot (b \oplus c) = (a \odot b) \ominus a \oplus (a \odot c) \text{ for every } a, b, c \in B.
\]

A skew brace is said to have abelian type if \((B, \oplus)\) is an abelian group.

Fact (Braces and regular subgroups [GV17])

For every brace \((B, \oplus, \odot)\) the group \((B, \odot)\) can be embedded as a regular subgroup of \(\text{Hol}(B, \oplus)\) and every regular subgroup of \(\text{Hol}(B, \oplus)\) gives rise to a brace; furthermore, isomorphic braces correspond to regular subgroups which are conjugate by an element of \(\text{Aut}(B, \oplus)\).

Every group is trivially a brace. We call a brace \((B, \oplus, \odot)\) with \((B, \odot) \cong G\) and \((B, \oplus) \cong N\) a \(G\) brace of type \(N\) and let \(\tilde{e}(G, N)\) denote the number of \(G\) braces of type \(N\). Thus, to classify \(G\) braces of type \(N\), one can find the set of regular subgroups of \(\text{Hol}(N)\) isomorphic to \(G\), then extract from this set a maximal subset whose elements are not conjugate by any element of \(\text{Aut}(N)\).
Therefore, to classify the Hopf-Galois structures and braces of order p^3 one needs to study $\text{Aut}(N)$, classify all regular subgroups of $\text{Hol}(N)$, for each group N of order p^3, then follow the procedures described in the previous slides. Up to isomorphism, there are 5 different groups of order p^3.

- The cyclic group C_{p^3} where $\text{Aut}(C_{p^3}) \cong C_{p^2} \times C_{p-1}$.
- The elementary abelian group C_{3^p} where $\text{Aut}(C_{3^p}) \cong \text{GL}_3(\mathbb{F}_p)$.
- Abelian, exponent p^2 group $C_p \times C_{p^2}$

$$1 \longrightarrow C_p \longrightarrow \text{Aut}(C_p \times C_{p^2}) \longrightarrow \text{UP}_2(\mathbb{F}_p) \longrightarrow 1.$$

- Nonabelian, exponent p^2 group

$$M_2 = \langle \sigma, \tau \mid \sigma^{p^2} = \tau^p = 1, \sigma^{p+1} \tau = \tau \sigma \rangle$$

$$1 \longrightarrow C_p \longrightarrow \text{Aut}(M_2) \longrightarrow \text{UP}_2(\mathbb{F}_p) \longrightarrow 1.$$

- Nonabelian, exponent p group

$$M_1 = \langle \rho, \sigma, \tau \mid \rho^p = \sigma^p = \tau^p = 1, \rho \tau = \tau \rho, \sigma \rho = \rho \sigma, \rho \sigma \tau = \tau \sigma \rangle$$

$$1 \longrightarrow C_p \longrightarrow \text{Aut}(M_1) \longrightarrow \text{GL}_2(\mathbb{F}_p) \longrightarrow 1.$$
It is common (in Hopf-Galois theory) to organise the regular subgroups of \(\text{Hol}(N) \) according to the size of their image under the projection

\[
\Theta : \text{Hol}(N) \rightarrow \text{Aut}(N) \quad \eta \alpha \mapsto \alpha.
\]

To construct regular subgroups \(H \subset \text{Hol}(N) \) with \(|\Theta(H)| = m \), where \(m \) divides \(|N| \), we take a subgroup of order \(m \) of \(\text{Aut}(N) \) which may be generated by \(\alpha_1, \ldots, \alpha_s \in \text{Aut}(N) \), say

\[
H_2 = \langle \alpha_1, \ldots, \alpha_s \rangle \subseteq \text{Aut}(N),
\]

a subgroup of order \(\frac{|N|}{m} \) of \(N \) which may be generated by \(\eta_1, \ldots, \eta_r \in N \), say

\[
H_1 = \langle \eta_1, \ldots, \eta_r \rangle \subseteq N,
\]

general elements \(\nu_1, \ldots, \nu_s \in N \), and we consider subgroups of \(\text{Hol}(N) \) of the form

\[
H = \langle \eta_1, \ldots, \eta_r, \nu_1 \alpha_1, \ldots, \nu_s \alpha_s \rangle \subseteq \text{Hol}(N).
\]
Then search for all v_i such that the group H is regular, i.e., H has the same size as N and acts freely on N. For H to satisfy $|\Theta(G)| = m$, it is necessary that for every relation $R(\alpha_1, \ldots, \alpha_s) = 1$ in H_2 we require

$$R(u_1(v_1\alpha_1)w_1, \ldots, u_s(v_s\alpha_s)w_s) \in H_1 \text{ for all } u_i, w_i \in H_1.$$

For H to act freely on N it is necessary that for every word $W(\alpha_1, \ldots, \alpha_s) \neq 1$ in H_2 we require

$$W(u_1(v_1\alpha_1)w_1, \ldots, u_s(v_s\alpha_s)w_s)W(\alpha_1, \ldots, \alpha_s)^{-1} \notin H_1 \text{ for all } u_i, w_i \in H_1.$$

However, in general there will be other conditions on v_i which we have to consider – for example, some elements of H need to satisfy relations between generators of a group of order $|N|$. We repeat this process for every m, every subgroup of order m of $\text{Aut}(N)$, and every subgroup of order $\frac{|N|}{m}$ of N.
Following the above procedures we can enumerated all Hopf-Galois structures on a field extension with Galois group G of order p^3, and, as a corollary, we can classify all braces of order p^3 for $p > 3$. Our results are summarised in tables below (rows correspond to G and columns correspond to N).

<table>
<thead>
<tr>
<th>$e(G, N)$</th>
<th>C_{p^3}</th>
<th>$C_{p^2} \times C_p$</th>
<th>C_p^3</th>
<th>M_1</th>
<th>M_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{p^3}</td>
<td>p^2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$C_{p^2} \times C_p$</td>
<td>-</td>
<td>$(2p - 1)p^2$</td>
<td>-</td>
<td>-</td>
<td>$(2p - 1)(p - 1)p^2$</td>
</tr>
<tr>
<td>C_p^3</td>
<td>-</td>
<td>-</td>
<td>$(p^4 + p^3 - 1)p^2$</td>
<td>$(p^3 - 1)(p^2 + p - 1)p^2$</td>
<td>-</td>
</tr>
<tr>
<td>M_1</td>
<td>-</td>
<td>-</td>
<td>$(p^2 + p - 1)p^2$</td>
<td>$(2p^3 - 3p + 1)p^2$</td>
<td>-</td>
</tr>
<tr>
<td>M_2</td>
<td>-</td>
<td>$(2p - 1)p^2$</td>
<td>-</td>
<td>-</td>
<td>$(2p - 1)(p - 1)p^2$</td>
</tr>
</tbody>
</table>

Table: Number of Hopf-Galois structures on Galois field extensions of degree p^3

<table>
<thead>
<tr>
<th>$\tilde{e}(G, N)$</th>
<th>C_{p^3}</th>
<th>$C_{p^2} \times C_p$</th>
<th>C_p^3</th>
<th>M_1</th>
<th>M_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{p^3}</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$C_{p^2} \times C_p$</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>$4p + 1$</td>
</tr>
<tr>
<td>C_p^3</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>$2p + 1$</td>
<td>-</td>
</tr>
<tr>
<td>M_1</td>
<td>-</td>
<td>-</td>
<td>$2p + 1$</td>
<td>$2p^2 - p + 3$</td>
<td>-</td>
</tr>
<tr>
<td>M_2</td>
<td>-</td>
<td>$4p + 1$</td>
<td>-</td>
<td>-</td>
<td>$4p^2 - 3p - 1$</td>
</tr>
</tbody>
</table>

Table: Number of skew braces of order $p^3
References

