Hopf-Galois Structures on Galois Field Extensions of Degree p^3

Kayvan Nejabati Zenouz
University of Exeter, UK
June 20, 2017

Introduction

Fix a prime $p > 3$ and let L/K be a Galois field extension of degree p^3 with Galois group G. Our main objective is to classify (or count) the Hopf-Galois structures on the extension L/K.

This is directly related to, for each group N of order p^3, all subgroups of the holomorph of N $\text{Hol}(N) = N \rtimes \text{Aut}(N) = \{ \eta \alpha | \eta \in N, \alpha \in \text{Aut}(N) \}$

isomorphic to G which are regular on N: a subgroup $H \subset \text{Hol}(N)$ is regular if the map $x \cdot \eta \mapsto (x, \eta) \cdot \alpha$ is a bijection. N. P. Byott classified Hopf-Galois structures of order p^3 and p^1 for all primes p and q in [Byo94] and [Byo96]. It turns out that the doing above, as G runs through all groups of order p^3, is directly related to the classification of braces (or skew braces) of order p^3. D. Bachiller classified braces of abelian type of order p^3 in [Bac15].

Hopf-Galois Structures

Definition (Hopf-Galois Structures)

A Hopf-Galois structure on L/K consists of a K-Hopf algebra H with an action of G on L making L into an H-Galois extension, i.e., H acts on L in such a way that the K-module homomorphism $j : L \otimes_K H \to \text{End}_K(L)$ given by $j(x \otimes y)z = xy(z)$ for $x, z \in L, y \in H$ is an isomorphism. The classical Hopf-Galois structure on L/K is the group ring $K[G]$, however, there may be more Hopf-Galois structures on L/K.

Fact (Hopf-Galois structures on L/K and regular subgroups)

Hopf-Galois structures on L/K correspond bijectively to the regular subgroups $N \subset \text{Perm}(G)$ normalised by G, i.e., every K-Hopf algebra H which makes L into an H-Galois extension is of the form $L[N]^{(G)}$ for some N with the above property, where the action of G on $L[N]$ is induced by the action of G on N by conjugation inside $\text{Perm}(G)$ and on L by Galois automorphism. This N is known as the type of the Hopf-Galois structure.

The relationship between G and N above may be reversed. In particular, if $e(G, N)$ is the number of Hopf-Galois structures on L/K of type N, then $e(G, N) = \text{Aut}(G) / e'(G, N)$ where $e'(G, N)$ is the number of regular subgroups of $\text{Hol}(N)$ isomorphic to G.

Braces

Definition (Skew brace)

A left skew brace (B, \circ, \circ) is a set B with two operations \circ, \circ such that (B, \circ) and (B, \circ) are groups, and the two operations are related by $a \circ (b \circ c) = (a \circ b) \circ (a \circ c)$ for every $a, b, c \in B$.

A left skew brace is called abelian type, or a brace, if (B, \circ) is abelian.

Braces were introduced by W. Rump [Rum07] in order to study the set-theoretic solutions of the Yang-Baxter equation which arises in mathematical physics.

Fact (Skew braces and regular subgroups)

For every skew brace (B, \circ) the group (B, \circ) can be embedded as a regular subgroup of $\text{Hol}(B, \circ)$ and every regular subgroup of $\text{Hol}(B, \circ)$ gives rise to a skew brace; furthermore, isomorphic skew braces correspond to regular subgroups which are conjugate by an element of $\text{Aut}(B, \circ)$.

Every group is trivially a skew brace. We call a skew brace (B, \circ, \circ) with $(B, \circ) \cong G$ and $(B, \circ) \cong N$ a G-skew brace of type N and let $\mathcal{E}(G, N)$ denote the number of G braces of type N. Thus, to classify G-skew braces of type N, one can find the set of all regular subgroups of $\text{Hol}(N)$ which are isomorphic to G, then extract from this set a maximal subset whose elements are not conjugate to each other by any element of $\text{Aut}(N)$.

Method

Therefore, to classify the Hopf-Galois structures and braces of order p^3 one needs to study $\mathcal{E}(N)$, classify all regular subgroups of $\text{Hol}(N)$, for each group N of order p^3, and follow the procedures described in the previous column.

Groups of Order p^3

Up to isomorphism, there are 5 different groups of order p^3 as follows:

- The cyclic group C_p where $\text{Aut}(C_p) \cong C_{p-1}$.
- The elementary abelian group C_p^3 where $\text{Aut}(C_p^3) \cong GL_3(F_p)$.
- Abelian, exponent p^2 group $C_p \times C_p$.
- Nonabelian, exponent p^2 group $M_2 = \{ (\rho, \sigma) | \rho^p = \sigma^p = 1, \rho \sigma = \sigma \rho, \rho \sigma \tau = \tau \sigma \}$.
- Nonabelian, exponent p group $M_3 = \{ (\rho, \sigma, \tau) | \rho^p = \sigma^p = 1, \rho \sigma = \rho, \rho \tau = \sigma \rho \}$.

All short sequences of groups above are exact, and we have denote by $UP_2(F_p) \subset GL_2(F_p)$ the set of upper triangular matrices and $UP_2(F_p)$ its subset whose elements have upper left entry 1.

Regular Subgroups in $\text{Hol}(N)$

It is common in Hopf-Galois theory to organise the regular subgroups of $\text{Hol}(N)$ according to the size of their image under the projection $\vartheta : \text{Hol}(N) \to \text{Aut}(N)$ $\eta \alpha \mapsto \alpha$.

although in brace theory they are organised by the size of their Socle which is the size of their intersection with $\text{Ker} \vartheta$. To construct regular subgroups $H \subset \text{Hol}(N)$ with $|\vartheta(H)| = m$, where m divides $|N|$, we take a subgroup of order m of $\text{Aut}(N)$ which may be generated by $\alpha_1, \ldots, \alpha_k \in \text{Aut}(N)$, say $H \alpha = \langle \alpha_1, \ldots, \alpha_k \rangle \subset \text{Aut}(N)$, a subgroup of order m which may be generated by $\alpha_1, \ldots, \alpha_k \in \text{Aut}(N)$, and consider subgroups of $\text{Hol}(N)$ of the form $H = \langle \alpha_1, \ldots, \alpha_k \rangle \subset \text{Hol}(N)$.

Then search for all α_1 such that the group H is regular, i.e., H has the same size as N and acts freely on N. For H to satisfy $|\vartheta(H)| = m$ it is necessary that for every relation $R(\alpha_1, \ldots, \alpha_k) = 1$ in F_2 we require $R(u_1(v_1, \alpha_1), \ldots, u_k(v_k, \alpha_k)w) \in H$, for all $u_i, w_i \in H$.

For H to act freely on N it is necessary that for every word $W(\alpha_1, \ldots, \alpha_k) \neq 1$ in H we require

$W(u_1(v_1, \alpha_1), \ldots, u_k(v_k, \alpha_k)w) W(\alpha_1, \ldots, \alpha_k)^{-1} \not\in H$, for all $u_i, w_i \in H$.

However, in general there will be other conditions on α_i which we have to consider – for example, some elements of H need to satisfy relations between generators of a group of order $|N|$. We repeat this process for every m, every subgroup of order m of $\text{Aut}(N)$, and every subgroup of order m of N. To find the non-isomorphism skew braces we need to check which one of these subgroups are conjugate to each other by elements of $\text{Aut}(N)$.

Results

Following the above procedures we can enumerated all Hopf-Galois structures on a field extension with Galois group G of order p^3, and, as a corollary, we can classify all skew braces of order p^3 for $p > 3$. Our results are summarised in tables below.

References

- David Stanek: Classification of braces of order p^3.
- Nigel P. Byott: Hopf-Galois structures on Galois field extensions of degree p^3.
- Wolfgang Rump: Braces, radical rings, and the quantum Yang-Baxter equation.